National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Methods of Accurate Measurement of Low Impedances
Mašláň, Stanislav ; Sedláček,, Radek (referee) ; Bilík, Petr (referee) ; Beneš, Petr (advisor)
Overall topic of presented thesis is development of methods of measurement of low impedances below 10 Ohm in a frequency range up to 1 MHz. The thesis comprises of three main parts. First part of thesis describes design of unique and simple calculable standards of resistance that are used for calibration of the bridge and as the reference standards for the calibrations. Next part of theses is focused on design of digital sampling bridge in various topologies suitable for measurement of various types of impedance standards up to frequency of 1 MHz. The thesis describes the HW components, data processing and corrections scheme allowing the designed bridge to reach expanded uncertainties (k=2) below 0.005% and 250 µrad at 1 MHz. One of the key points of the proposed corrections scheme is unique automatic linearity calibration method requiring minimal operator's effort. The theses also describes integration of Spice model of the bridge the bridge SW that allowed validation of functionality of the bridge and also analysis of uncertainty contributions related to interferences between the bridge components. The last part of the thesis shows selection of measurements of known impedances and international comparisons that proofs performance of the bridge.
Methods of Accurate Measurement of Low Impedances
Mašláň, Stanislav ; Sedláček,, Radek (referee) ; Bilík, Petr (referee) ; Beneš, Petr (advisor)
Overall topic of presented thesis is development of methods of measurement of low impedances below 10 Ohm in a frequency range up to 1 MHz. The thesis comprises of three main parts. First part of thesis describes design of unique and simple calculable standards of resistance that are used for calibration of the bridge and as the reference standards for the calibrations. Next part of theses is focused on design of digital sampling bridge in various topologies suitable for measurement of various types of impedance standards up to frequency of 1 MHz. The thesis describes the HW components, data processing and corrections scheme allowing the designed bridge to reach expanded uncertainties (k=2) below 0.005% and 250 µrad at 1 MHz. One of the key points of the proposed corrections scheme is unique automatic linearity calibration method requiring minimal operator's effort. The theses also describes integration of Spice model of the bridge the bridge SW that allowed validation of functionality of the bridge and also analysis of uncertainty contributions related to interferences between the bridge components. The last part of the thesis shows selection of measurements of known impedances and international comparisons that proofs performance of the bridge.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.